ORIGINAL PAPER

A. Matsumoto · Y. Tsumura

Evaluation of cleaved amplified polymorphic sequence markers for *Chamaecyparis obtusa* based on expressed sequence tag information from *Cryptomeria japonica*

Received: 11 March 2003 / Accepted: 2 June 2004 / Published online: 10 November 2004 © Springer-Verlag 2004

Abstract We have developed and evaluated sequencetagged site (STS) primers based on expressed sequencetag information derived from sugi (Cryptomeria japonica) for use in hinoki (Chamaecyparis obtusa), a species that belongs to a different family (although it appears to be fairly closely related to sugi). Of the 417 C. *japonica* STS primer pairs we screened, $120 ~(\sim 30\%)$ were transferable and provided specific PCR amplification products from 16 C. obtusa plus trees. We used haploid megagametophytes to investigate the homology of 80 STS fragments between C. obtusa and C. japonica and to identify orthologous loci. Nearly 90% of the fragments showed high (>70%) degrees of similarity between the species, and 35 STSs indicated homology to entries with the same putative function in a public DNA database. Of the 120 STS fragments amplified, 72 showed restriction fragment length polymorphisms; in addition, the CC2430 primers detected amplicon length polymorphism. We assessed the inheritance pattern of 27 cleaved amplified polymorphic sequence markers, using 20 individuals from the segregation population. All the markers analyzed were consistent with the marker inheritance patterns obtained from the screening panel, and no markers (except CC2716) showed significant (P < 0.01) deviation from the expected segregation ratio. In total, 136 polymorphic markers were developed using C. japonica-based STS primers without any sequence modification. In addition, the applicability of

Communicated by D.B. Neale

A. Matsumoto · Y. Tsumura (⊠) Department of Forest Genetics, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan E-mail: ytsumu@ffpri.affrc.go.jp Tel.: +81-29-8733211 Fax: +81-29-8743720 STS-based markers developed in one species to other species was found to closely reflect the evolutionary distance between the species, which is roughly concordant with the difference between their rbcL sequences. We plan to use these markers for genetic studies in *C. obtusa*. Most of the markers should also provide reliable anchor loci for comparative mapping studies of the *C. obtusa* and *C. japonica* genomes.

Introduction

Sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa) are the two most widely cultivated timber conifers in Japan. Both species are economically important, and nationwide forest-tree breeding programs were initiated for them in the 1950s. Taxonomically, C. japonica belongs to the Taxodiaceae, whereas C. obtusa belongs to the Cupressaceae, but this classification has been questioned in several studies (Eckenwalder 1976; Hart 1987; Price and Lowenstein 1989). Recent molecular phylogenetic studies have clarified the evolutionary relationship between the two families, using rbcL sequence (Brunsfeld et al. 1994), 28S rRNA sequence (Stefanovic et al. 1998), and PCR-RFLP analyses of chloroplasts (Tsumura et al. 1995). In addition, Kusumi et al. (2000) determined the phylogenetic relationship between the Taxodiaceae and Cupressaceae, using nucleotide sequences from four regions of the chloroplast DNA. The results from these studies indicate that the two families form a monophyletic group. Kusumi et al. (2000) further strongly suggested that Cupressaceae were derived from representatives of the Taxodiaceae, being most closely related to the C. japonica/ Taxodium/Glyptoctrobus clade. Therefore, we assume that C. japonica and C. obtusa are closely related species and expect them to show high levels of synteny and colinearity.

During the last 5 years, *C. japonica* has been extensively studied under the *C. japonica* Genome project. In particular, we have obtained more than 8,000 partial sequences of expressed sequence tags (ESTs) from *C. japonica* cDNA libraries. These results were reported in part by Ujino-Ihara et al. (2000). Furthermore, many useful sequenced-tagged site (STS) markers for *C. japonica* genome mapping and population studies have been developed using previously published information (Nikaido et al. 2000; Iwata et al. 2001; Tani et al. 2003a, b).

Cleaved amplified polymorphic sequence [(CAPS) also known as PCR-RFLP)] markers based on STSs derived from ESTs have been developed, and a genetic linkage map of C. japonica has been constructed (Iwata et al. 2001; Tani et al. 2003a). The CAPS molecular marker system has several advantages. First, since analysis of restriction fragment length polymorphisms is based on polymerase chain reaction (PCR) amplification, it is much easier and less time-consuming, especially for species with large genomes, such as conifers [e.g., the estimated C-values are 21-23 pg in loblolly pine (Wakamiya et al. 1993), 11 pg in C. japonica, and 10 pg in C. obtusa (Hizume et al. 2001)] than analyzing alternative types of markers that require Southern hybridizations. Second, the primers for CAPS markers based on ESTs are more useful as genetic markers for comparative mapping study than those based on anonymous, non-functional sequences such as microsatellite markers, because the coding regions of functional genes are generally well conserved, not only within but also between species. Third, CAPS markers are inherited mainly in a co-dominant manner.

PCR-based markers derived from ESTs have recently been developed as anchor markers for comparative mapping studies in conifers (Brown et al. 2001). Therefore, the availability of thousands of *C. japonica* ESTs is expected to present opportunities to develop new anchor loci for other conifer species to support comparative genome analysis. Exploiting this potential would increase the effectiveness of markers that have already been developed and reduce the cost of developing new markers in *C. obtusa*. In the present study, we applied *C. japonica* STS primers directly to the conifer *C. obtusa*, which is related but belongs to a different coniferous family, and developed CAPS markers for advanced genetic research and breeding programs in *C. obtusa*.

Materials and methods

Plant materials

Sixteen plus tree clones, selected from artificial forests in various regions of Japan, were used to detect polymorphism in order to develop CAPS markers. The segregation population used to assess the inheritance patterns of the markers was developed from the backcross of an F_1 individual derived from the plus tree clones 'Fudago-2' and 'Izu-3'. The progeny were produced between an F_1 individual as the female parent and an 'Izu-3' individual as the male parent. A total of 20 individuals of the segregation population were used to determine the

PCR amplification of STSs in *C. obtusa*, using *C. japonica* STS primers

marker inheritance patterns.

Fresh leaves were collected from the 16 plus tree clones to evaluate the polymorphism for each CAPS marker and from the grandparents, 'Fudago-2' and 'Izu-3', the F_1 tree, and the 20 segregation progeny to determine the modes of marker inheritance. Genomic DNA was extracted from 50 mg of leaf material, using a Dneasy Plant Mini Kit (Qiagen), and STS primers homologous to sequences in the C. japonica cDNA library were used to test their transferability to C. obtusa. Some of the primers in this set have already been reported by Iwata et al. (2001) and Tani et al. (2003a, b). PCR amplification was performed by the method according to Iwata et al. (2001) with minor modifications, i.e., containing 10 ng DNA, 1.0 U Taq polymerase (Promega or TaKaRa), and carried out in a thermal cycler (GeneAmp PCR Instrument Systems 9600, Applied Biosystems) programmed for 5 min of preheating at 94°C followed, by 40 cycles of 1 min at 94°C, 1 min at 50°C, and 1 min 30 s at 72°C, with a final incubation of 5 min at 72°C. For annealing, three other temperatures (55, 60, and 65°C) were tested for all primer pairs. The PCR products were separated on 2% agarose gels and stained with ethidium bromide to check whether single bands had been amplified.

Sequence analysis and homology determination of STSs

C. obtusa and *C. japonica* genomic DNAs were extracted from haploid megagametophyte tissues in seeds by the CTAB method and used for PCR amplification. PCR products that showed single bands were each purified in a Multiscreen FB plate (Millipore) and used as templates for the sequencing reactions. Cycle sequencing was performed from both ends of each purified, amplified fragment with the forward and reverse STS primers and a Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems). Each sequence was detected using an ABI377 automatic sequencer (Applied Biosystems) according to the manufacturer's instructions. We then analyzed the sequence data using Sequence Analysis Software, version 3.7 (Applied Biosystems).

Comparison of the transferability of STS markers to closely related species and their phylogenetic relationships

To assess the transferability of STS markers to other species and their phylogenetic relationships, the chloroplast *rbcL* gene sequences of nine coniferous species were compared. To test the transferability of *C. japonica* STSs, we selected two species, *C. obtusa* and *Taxodium* (Tsumura et al. 1999), which are closely related to *C. japonica* (Kusumi et al. 2000), and for *Pinus taeda* STSs (Brown et al. 2001), we compared five species of pine and one of *Pseudotsuga*. All sequence data were obtained from the DDBJ database, and 1,258 nucleotides and 418 amino acids were compared amongst the nine species.

Polymorphism detection from STSs

Primers that successfully supported amplification of a single fragment from C. obtusa were identified and used for the detection of restriction site polymorphisms in a screening panel comprising 16 C. obtusa plus trees, including the grandparents of the segregation progeny. Amplified fragments were first digested with each of 14 restriction enzymes (AluI, Bst0I, DdeI, HaeIII, HaeIII, HhaI, HinfI, MspI, NciI, NdeII, RsaI, StyI, SinI, and TaqI); if none of these enzymes revealed polymorphism, samples were digested with each of 12 additional restriction enzymes (AvaI, BamHI, BanII, Bg/I, Bg/II, DraI, Eco0109I, EcoRI, HincII, HindIII, NsiI, and SspI). Out of 36 restriction enzymes utilized in C. japonica (Iwata et al. 2001), the above 26 enzymes were higher in rank for polymorphism detection. We may expect effective polymorphism detection using these enzymes and supposed that time and cost could be saved in present study. The restricted PCR products were resolved by electrophoresis on 2% agarose gels containing ethidium bromide, and polymorphic STSs were detected as described for CAPS markers (Iwata et al. 2001).

To identify informative markers, we evaluated the degree of polymorphism they each detected using the polymorphic information content [(PIC) Botstein et al. 1980)] as an index for all the polymorphic markers generated by the various combinations of STSs and restriction enzymes.

Segregation analysis

To determine the mode of inheritance of the polymorphic STSs (i.e., the CAPS markers), we randomly chose 20 individuals from the segregation population, derived (as described above) from a backcross between the F_1 hybrid and 'Izu-3'. Segregation data were evaluated by χ^2 -tests for goodness of fit to the expected Mendelian distribution.

Results

PCR amplification of STSs

We expected more than half of the 417 C. japonica STS primer pairs tested to provide single-band amplification in C. obtusa at one of the four annealing temperatures (50, 55, 60, or 65°C) used during the first screening. Eventually, after fine-tuning the annealing temperature, 120 primer pairs that met our criteria were obtained (Appendix). These results indicate that approximately 29% of STS primers derived from C. japonica EST sequences can be used directly as STS primers for C. obtusa species. Of the remaining 297 primer pairs, 221 yielded multiple bands, and 76 failed to support amplification. Of the 120 successful primer pairs, eight (CC1908, CC2930, CC3055, CC3106, CC3152, C3414, CC3455, and CC3861) provided single-band amplification in C. obtusa, but not in C. japonica. For 90 of the 120 STS primer pairs, agarose gel electrophoresis roughly distinguished amplified products that differed in size between C. obtusa and C. japonica.

Sequence comparison between *C. obtusa* and *C. japonica*

We amplified STS fragments from one individual each of C. japonica and C. obtusa for sequence analysis. The partial nucleotide sequences obtained using the same primer pairs as for the amplification confirmed the similarities between these two species. Generally, orthologous loci of closely related species are theoretically expected to exhibit high nucleotide similarity. We sequenced and compared the level of nucleotide identity between these products from the two species, but excluding large indel regions (more than 100 nucleotides). Of the 80 STSs successfully compared (Table 1), 70 (87.5%) showed a nucleotide identity of 72% to 100% between C. obtusa and C. japonica, while the other ten showed low (< 50% identity) levels of similarity between the two species. The results of a BLAST homology search using the sequence data from these 70 STSs as queries showed homology to known protein sequences for 35 of them, with BLAST values higher than 50.

Polymorphism detection for developing CAPS

To develop CAPS markers, genomic DNA templates prepared from the 16 C. obtusa plus trees (including

 Table 1 Putative function of Chamaecyparis sequence-tagged sites (STSs) and nucleotide identity between C. obtusa and Cryptomeria japonica

STS	Accession no.	Nucleotide identity ^a	BLAST score	Functional annotation ^b
CC0277	AB127118	373/379 (98%)	111	Putative senescence-associated protein
CC0278	AB127119	318/347 (91%)	< 50	Low score
CC0281	AB127120	321/331 (97%)	79	Unknown protein
CC0285	AB127121	267/295 (90%)	-	No hit
CC0286	AB127185	315/334 (94%)	172	Similarity to phosphate/phosphoenolpyruvate translocator
CC0292	AB127122	591/670 (88%)	96	Unknown protein
CC0316	AB127123	506/516 (98%)	128	Auxin-induced protein
CC0336	AB127124	429/495 (86%)	115	Similar to mandelonitrile lyase
CC0344	AB127125	241/271 (89%)	< 50	Low score
CC0352	AB127188	Low similarity	-	Not determined
CC0374	AB127142	631/666 (94%)	134	Quinone oxidoreductase-like protein
CC0421	AB12/18/	Low similarity	-	Not determined
CC0428	AB127126	416/456 (91%)	95	Glutamate decarboxylase I
CC0438-1	AB127127	450/465 (96%)	128	Light-independent protochlorophyllide reductase subunits
CC0550	AB127184	349/390 (89%)	175	Chitinase
CC0674	AB127186	216/254 (85%)	77	Unknown protein
CC0702	AB127128	380/462 (84%)	< 50	Low score
CC0708	AB127129	394/448 (87%)	50	Unknown protein
CC0725	AB127130	581/634 (91%)	169	SKIP nuclear coactivator-like protein
CC0731	AB127131	422/499 (85%)	409	60S ribosomal protein
CC0737	AB127132	469/531 (88%)	75	60S acidic ribosomal protein
CC0790	AB127133	525/539 (97%)	157	Putative senescence-associated protein
CC0822	AB127134	605/734 (84%)	106	Similarity to ubiquitin fusion degradation protein 1
CC0831	AB127189, AB127190	1,162/1,404 (83%)	247	Hypothetical protein
CC0838	AB127135	412/476 (86%)	217	Thaumatin-like protein mRNA
CC0854	AB127136	364/394 (91%)	230	40S ribosomal protein S16
CC0858	AB127183	645/729 (88%)	280	erg-1 mRNA
CC0860	AB127144	244/267 (91%)	67	HistoneH3-D
CC0951	AB127191	Low similarity	_	Not determined
CC0958	AB127182	412/466 (88%)	-	No hit
CC0983	AB127143	276/327 (84%)	< 50	Low score
CC1015	AB127181	617/675 (91%)	53	Similarity to storage protein
CC1017	AB127145	475/650 (73%)	-	No hit
CC1104	AB164397	Low similarity	-	Not determined
CCI112	AB12/180	608/690 (88%)	< 50	Low score
001145	AB12/13/	434/501 (86%)	< 50	Low score
CC1145	AB12/138 AB127102	388/439 (88%)	140	Unknown protein
CC1147	AD12/192 AD164208	$\frac{623}{693} (90\%)$	< 30	LOW score
CC1187	A B104396	296/552(6976) 307/430(0294)	< 50	Low score
CC1287	AB127140	Low similarity	< 50	Not determined
CC1319	AB127147 AB127148	306/425 (72%)	54	Debydrin m $\mathbf{R}\mathbf{N}\mathbf{A}$
CC1371	AB127149	443/491(90%)	73	Similarity to MSP1 protein
CC1415	AB127150	287/314 (91%)	68	Unknown protein
CC1432	AB127193, AB127194	1.146/1.336 (86%)	90	Unknown protein
CC1463	AB127151	594/641 (93%)	92	Hypothetical protein
CC1555	AB127153	317/345 (91%)	184	Similarity to glycosyl transferase lgtC
CC1531	AB127152	Low similarity	_	Not determined
CC1606	AB127154	728/837 (86%)	361	Myb gene for Myb transcription factor
CC1625	AB127155	348/394 (88%)	< 50	Low score
CC1697	AB164399	Low similarity	_	Not determined
CC1711	AB127156	1,134/1,375 (82%)	< 50	Low score
CC1787	AB164400	Low similarity	< 50	Low score
CC1798	AB127157	520/719 (72%)	209	Chitinase mRNA
CC1799	AB127158	506/630 (80%)	< 50	Low score
CC1974	AB127159	302/305 (99%)	< 50	Low score
CC2188	AB127160	128/142 (90%)	94	Methionine adenosyltransferase
CC2196	AB127161	499/553 (90%)	269	WD-repeat protein 5
CC2237	AB127162	596/687 (88%)	< 50	Low score
CC2286	AB127179	387/431 (90%)	< 50	Low score
CC2288	AB127163	Low similarity	-	Not determined
CC2427	AB127164	485/526 (92%)	117	Hypothetical protein

STS	Accession no.	Nucleotide identity ^a	BLAST score	Functional annotation ^b
CC2435	AB164401	536/650 (82%)	60	Similarity to zinc finger protein 216
CC2448	AB127165	366/407 (90%)	83	Flavone synthase mRNA
CC2478	AB164402, AB164403	764/840 (91%)	53	Unknown protein
CC2483	AB127166	526/613 (86%)	68	Hypothetical protein
CC2588	AB127167	604/713 (84%)	-	No hit
CC2716	AB127178	856/951 (90%)	86	EIN3-like protein mRNA
CC2777	AB127177	Low similarity	-	Not determined
CC2860	AB127168	570/649 (88%)	< 50	Low score
CC2865	AB127169	533/552 (96%)	140	Putative lysophospholipase isologue mRNA
CC2916	AB127170	626/668 (93%)	266	DNA-directed RNA polymerase beta" chain
CC2917	AB127171	440/472 (93%)	130	Unknown protein
CC2920	AB127172	595/674 (88%)	247	mRNA for elicitor inducible chitinase Nt-SubE76
CC2976	AB127176	384/431 (89%)	< 50	Low score
CC3133	AB127173	583/625 (93%)	254	Unknown protein
CC3162	AB127174	517/590 (87%)	195	Cell death associated protein
CC3807	AB127175	640/640 (100%)	125	Putative retroelement protein
CC3816	AB127195, AB127139	579/667 (87%)	< 50	Low score
CC3872	AB127140, AB127141	474/524 (90%)	210	Ethylene-insensitive-like mRNA

^aNumber of nucleotides identical/number of nucleotides compared between *C. obtusa* and *C. japonica* (nucleotide identity). *Low similarity* indicates nucleotide identity less than 50%

the grandparents of the segregation population) were PCR-amplified using the 120 identified STS primer pairs, and the PCR products were digested with either 14 or 26 restriction enzymes. Electrophoresis in agarose gels revealed that 72 STSs (60%) showed polymorphisms after digestion with at least one restriction enzyme. In total, the combination of these 72 STSs and various restriction enzymes provided 135 different banding patterns of CAPS markers. Additionally, primer set CC2340 provided amplification products (without restriction digestion) of differing sizes amongst the 16 C. obtusa plus trees, and thus identified amplicon length polymorphism. The polymorphisms observed could be divided into two types of inheritance patterns, dominant and co-dominant. The PIC values calculated for the polymorphic markers ranged from 0.06 to 0.58, averaging approximately 0.30.

Segregation analysis

We verified the marker inheritance patterns, using 20 individuals from the segregation population. Of the 72 CAPS markers identified, we expected that 27 would segregate in the progeny, because one or both of the parental genotypes was/were heterozygous (Table 2). In fact, five CAPS markers (CC0344, CC1319, CC2588, CC2920, and CC3872), which displayed dominant inheritance patterns in the screening panel, were practically co-dominant, according to the results of the segregation analysis. All the 27 markers analyzed were inherited in a Mendelian manner. Furthermore, no

^bFrom BLAST search of GenBank with a *Chamaecyparis* STS as query. *Low score* indicates a BLAST value less than 50

significant (P < 0.01) deviation from the expected segregation ratio was found for any markers except CC2716.

Discussion

Transferability of EST-based STS markers in conifers

Primers that are widely transferable across taxonomic borders are very attractive, because they offer the potential to avoid duplication of many complicated, costly, and time-consuming processes (e.g., constructing genomic/cDNA libraries, sequencing clones, designing and synthesizing primers). In this study, we directly applied more than 400 STS primer pairs designed from *C. japonica* EST sequences to PCR amplification in *C. obtusa*.

Tsumura et al. (1997) previously evaluated the rate of conservation of EST sequences from *C. japonica* among several conifer species on a smaller scale than here. In both our present study and that of Tsumura et al. (1997), about 30% of the tested STS primers could be transferred from *C. japonica* to *C. obtusa*. In comparison, Brown et al. (2001) evaluated 90 primer sets based on ESTs of loblolly pine (*P. taeda* L.). They observed that nearly 90% of primers, on average, were transferable at the subgenus level. Furthermore, 22% were useful in Douglas fir, which belongs to a different genus (*Pseudotsuga*) but the same family.

The genetic relationship between *C. obtusa* and *C. japonica* (which belong to different taxonomic

Table 2 Segregation analysis of 27 cleaved amplified	CAPS mark	er ^a	Genoty	pe ^c	Expected	Observed	χ^2 -test
polymorphic sequence (CAPS) markers in 20 progeny of the cross between 'Izu-3' and F ₁	STS	Restriction enzyme	'Izu'	2a	ratio	ratio	probability
individual 2a of C. obtusa	CC0292	MspI	AB	AA	1:1	12:8	0.37
	CC0344 ^b	RsaI	AB	AB	1:2:1	5:9:6	0.75
	CC0530	Bst0I	AB	AB	1:2:1	4:8:8	0.44
	CC0550	MspI	AB	BB	1:1	13:7	0.18
	CC0737	DraI	Aa	aa	1:1	11:9	0.65
	CC0831	NdeII	Aa	aa	1:1	12:8	0.37
	CC0838	HaeIII	aa	Aa	1:1	7:13	0.18
	CC0858	SinI	AB	AB	1:2:1	5:11:4	0.75
	CC1287	SspI	AB	BB	1:1	6:13	0.11
	CC1319 ^b	DdeI	AB	AB	1:2:1	5:7:7	0.41
	CC1606	AluI	AB	AB	1:2:1	4:8:4	1.00
	CC2196	AluI	AA	AB	1:1	14:6	0.07
	CC2237	TaqI	AB	AB	1:2:1	6:10:3	0.55
	CC2427	AluI	Aa	aa	1:1	12:8	0.37
	CC2478	HaeIII	aa	Aa	1:1	10:10	1.00
20100 1 1 1 1 1	CC2588 ^b	MspI	AB	AB	1:2:1	8:9:3	0.17
"CAPS markers developed from	CC2716	MspI	Aa	Aa	3:1	7:12	< 0.01
the combination of the listed	CC2752	AluI	aa	Aa	1:1	9:11	0.65
STSs (from C. japonica) and	CC2839	AluI	AB	AB	1:2:1	13:7	0.67
restriction enzymes	CC2860	DdeI	AB	AB	1:2:1	7:10:2	0.30
The markers were re-evaluated	CC2920 ^b	MspI	AB	AB	1:2:1	6:11:3	0.58
as co-dominant after segrega-	CC2930	HaeIII	AB	AB	1:2:1	5:8:5	0.68
tion analysis	CC3133	EcoRI	aa	Aa	1:1	10:10	1.00
Parental genotypes are	CC3152	HinfI	AB	AB	1:2:1	8:7:4	0.22
presented in <i>capital letters</i> for	CC3455	RsaI	AB	AB	1:2:1	4:7:9	0.12
co-dominant markers and	CC3816	RsaI	AB	BB	1:1	8:12	0.37
<i>lowercase letters</i> for dominant markers	CC3872 ^b	NdeII	AB	AB	1:2:1	7:9:4	0.58

families) is probably much closer than has generally been recognized. The chloroplast *rbcL* gene sequence is frequently used to evaluate phylogenetic relationships between species. Therefore, we compared nucleotide and amino acid sequences of rbcL among nine coniferous species (Table 3). Nucleotide differences were detected between the rbcL genes of C. japonica and Taxodium distichum at 18 out of 1,258 nucleotide sites evaluated. In comparison, there was a 34-nucleotide difference between C. japonica and C. obtusa and a 108nucleotide difference between C. japonica and P. taeda.

Approximately half of the STSs developed in C. japonica by Tsumura et al. (1999) were specifically amplified in T. distichum, and approximately 30% of the C. japonica STSs occurred in C. obtusa. Although the cited authors also evaluated P. taeda, the amplification success in this case was only 6%. As the number of differences in the rbcL nucleotide sequences increased between the species of interest, the transferability of markers decreased. In another example, the transferability of STSs developed in P. taeda was found to be over 80% in P. elliottii, P. radiata, P. pinaster,

Table 3 Pairwise comparison of chloroplast rbcL gene sequences among species. A total of 1,258 nucleotides and 418 amino acid sites were compared. The numerals above the diagonal are the numbers of nucleotide differences and below the diagonal are the

numbers of amino acid differences between the species. Sequence data for *rbcL* gene of nine species were obtained from DDBJ database

	C. japonica	Taxodium distichum	C. obtusa	Pinus taeda	P. elliottii	P. radiata	P. pinaster	P. sylvestris	P. menziesii
C. japonica ^a	_	18	34	108	107	109	109	113	104
T. distichum	7	-	32	100	100	102	105	103	101
C. obtusa	5	5	_	108	107	110	109	110	106
P. taeda	8	4	6	_	0	2	8	8	31
P. elliottii	9	4	6	0	_	2	9	9	32
P. radiata	10	5	7	1	1	_	11	10	34
P. pinaster	10	9	7	4	4	6	_	4	31
P. sylvestris	10	7	7	3	3	4	2	_	33
P. menziesii	7	7	5	5	5	6	6	6	_

^aAccession numbers in DDBJ database: C. japonica, L25751; T. distichum, AF119185; C. obtusa, L12570; P. taeda, AF119177; P. elliottii, AB081075; P. radiata, AB063383; P. pinaster, AB019818; P. sylvestris, AB019809; P. menziesii, X52937, S53466

and P. sylvestris (Brown et al. 2001), in which the rbcL nucleotide sequence differs by only zero to eight nucleotides from that of *P. taeda*. In comparison, 22% transferability was obtained when the P. taeda-based STSs were applied to P. menziesii. These findings suggest that the level of nucleotide difference in the *rbcL* sequences is a good indicator for the transferability of markers between species. However, despite the similarity of their *rbcL* genes at the nucleotide level, the transferability of C. japonica markers to C. obtusa was slightly higher than the transferability of P. taeda markers to P. menziesii (Brown et al. 2001). This difference in transferability might reflect differences in the type of region for which the primers were designed. The primers we designed are positioned within exons (Iwata et al. 2001) whose sequences are likely to be highly conserved between related species, whereas Temesgen et al. (2001) used reverse primers that were based on sequences in the 3' untranslated region, which is likely to be more genetically variable. Another factor that influences the transferability of markers may be genome size. The genome sizes of *C. japonica* and *C. obtusa* were estimated to be $\sim 1 \times 10^{10}$ bp, whereas those of pine species were 2-3 times larger (2- 3×10^{10} bp). Therefore, identifying STS markers that amplify specific PCR products (i.e., amplification of a single locus) in pine would be more difficult than identifying such markers in C. japonica or C. obtusa.

Importance of PCR-based co-dominant markers in conifers

Transferable markers not only provide economic benefits, they also accommodate comparative mapping between different species. To date, markers used for comparative mapping have mainly been heterologous RFLPs, which have been detected by conserved-sequence probes in many species (e.g., rice, maize, pearl millet, foxtail millet, sorghum, sugarcane, wheat, barley, and rye; Gale and Devos 1998). In the comparative mapping of tree species, PCR-based markers are much more convenient and useful than RFLP markers, especially for conifers, because of their large genome size. In pine species, multigene families and pseudogenes (Kinlaw and Neale 1997) also obstructed the progress of genome mapping study with RFLP markers. Recentry, Brown et al. (2001) examined anchored reference loci, using PCR-based markers in pine species for integrating pine genomics. To confirm the orthology of candidate loci, they investigated the sequence similarities of PCR amplification products between loblolly and slash pines, using a reference panel of ten anchor loci. Of the 88 STS fragments sequenced in both species, more than 90% showed high nucleotide similarity, and homologous sequences with the same putative function were found in public databases. In comparison, eight of our primer pairs (CC1908,

CC2930, CC3055, CC3106, CC3152, CC3414, CC3455, and CC3861) failed to support PCR amplification of a single band in C. japonica. With these primers, no amplification occurred at annealing temperatures of 55°C and 60°C, and multiple bands appeared at 50°C (data not shown). Although we used primers designed to bind mainly to sites within exons, the specificity of these primer sequences with respect to the C. japonica genome may have been slightly lower than that for C. obtusa simply by chance. The level of nucleotide similarity that distinguishes paralogues from orthologues is subjective (Brown et al. 2001). Komulaine et al. (2003), and Chagne et al. (2003), for instance, loci orthology in pine species requires higher nucleotide identity (more than 95%). Therefore, we recognized that further investigation would be needed, although our results likely provide a useful indicator for comparative mapping analyses.

CAPS markers are theoretically expected to be inherited in a co-dominant manner when the marker is derived from a single-copy gene. According to Iwata et al. (2001), co-dominant inheritance encompasses the following three scenarios: (1) bi-allelic co-dominant patterns for which two homozygotic and one heterozygotic forms are found; (2) bi-allelic co-dominant patterns for which only two homozygotic (and no heterozygotic) forms occur; and (3) multi-allelic codominant patterns, which apparently correspond to genotypes with multiple alleles. In comparison, dominant inheritance is manifested as bi-allelic dominance patterns, which can be scored only in terms of presence or absence. In this study, 31 STSs showed co-dominant patterns, and 41 showed only dominant patterns. However, five CAPS markers that showed dominant patterns in the screening panel were re-categorized after the segregation analysis as having co-dominant inheritance, bringing the rate up to 50%. According to Iwata et al. (2001), because of the limited number of individuals assessed during the screening process, homozygotes with rare alleles at the corresponding loci may not have been sampled. The 16 plus trees we selected for this study were all from central Japan, and thus are unlikely to represent all of the genotypes, considering the broad natural distribution of C. obtusa, which ranges from Fukushima Prefecture (37°10'N) in the north to the Kyusyu area (30°15'N) in the south. Most of the 150 CAPS markers used to analyze natural populations of C. japonica showed co-dominant inheritance (Tsumura et al., unpublished data). Therefore, extended segregation analysis will likely show that the remaining 37 of our CAPS markers are actually codominant.

Polymorphism of CAPS markers

The true level of polymorphisms (i.e., the development efficiency of CAPS markers) in *C. obtusa* is likely to be

higher than the level we detected. Using 26 restriction enzymes, we eventually determined that more than half of the C. japonica-based STSs were polymorphic in C. obtusa. The informativeness of these markers was measured by PIC, the average value of which was found to be 0.30. In a previous study, Iwata et al. (2001) reported that 267 of 361 STSs originally developed in C. japonica were polymorphic in a screening experiment based on 36 restriction enzymes and 15 individuals, and the average PIC value was 0.31 for biallelic co-dominant markers, corresponding to two homozygote and one heterozygote forms. Generally, the STS primers developed from one species that support DNA amplification in another may not accurately reflect the level of polymorphism in the other species. However, even though we used fewer restriction enzymes than the previous study in C. japonica (Iwata et al. 2001), more than 50% of our C. japonica-based STSs showed polymorphisms. Therefore, it seems that we could efficiently detect polymorphic regions, using the transferable primers in C. obtusa.

Our newly developed CAPS markers will likely be effective in diverse applications, for example, genome mapping, population analysis of C. obtusa, and comparative mapping studies of coniferous species (especially species of the Cuppresaseae). The genetic diversity among natural populations of C. japonica has been evaluated using several CAPS markers (Tsumura and Tomaru 1999). Population studies using larger numbers of CAPS markers may provide us more precise information. In this study, we successfully developed 136 polymorphic markers, using STS-based C. japonica primers without any modification of the primer sequences. We plan to use these markers for a genetic study of C. obtusa. Most of the markers developed could also provide reliable anchor loci for comparative mapping studies between the C. obtusa and C. japonica genomes.

Acknowledgements The authors would like to thank T. Kondo and M. Okamura, who provided plant materials. We also thank K. Aoyagi, M. Koshiba, Y. Kawamata, and Y. Taguchi for their technical support and N. Tani, H. Iwata, T. Ujino-Ihara, K. Yoshimura, H. Yoshimaru, and K. Nagasaka for their helpful suggestions during this study, which was supported by a grant from the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) and the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (B), No. 16380112.

Appendix

Table 4 shows size and polymorphic information content (*PIC*) of sequence-tagged site (*STS*) markers detected in hinoki (*Chamaecyparis obtusa*), using primers developed in sugi (*Cryptomeria japonica*)

Table

Restriction enzymes used	Cryptomeria and resulting PIC	400 Ddel(0.26). Ncil(0.16)	400 Mspl [0.06]	320	350 Alul (0.37)	400 - 400	- 380	700 MspI(0.40)	370 - 370	- 009	550 -	500 Rsal(0.35), DdeI(0.37)	TaqI(0.36), HaeIII(0.37)	1,000 -	- 009	550 -	- 002	- 006	2,000 $Bst0I(0.56)$	MspI(0.16)
Size ^a	Chamaecyparis	500	400	350	350	300	400	700	350	600	550	450	> 1,500	1,000	350	1,000	009	800	> 1,500	009
Annealing	temperature (°C)	57	57	57	57	57	54	57	57	57	57	57	57	57	57	57	57	57	57	55
Reverse primer		TTGGGCCAGCCTTTCC	CCGATCGAAGGTAGCCAATG	ATTTGACCCGCCACTCATT	CCTGTCTCACGACGGTCTA	GAGGAGCCTGGCATCA	TGTCATACTCTCGCCGTCTC	TGCCAAGCAATCTGAGAGAG	TTGGTGGATCAGTTGGAACAT	GCGCACTTTCCTGGTGTT	TCTCATCCCACTCCATCTCTC	TCTCCGCCATTACAAGA	CGAATATGGCAGATAGTCAAT	TATTGCCCACGTTTCTCTCTG	TCTTTCATGCAGGTGCAAGTC	TTGCGCTTGTTCTGCCACTTA	GAGTGCTTTCGCCTGTTGGTG	TTGTAATTAGCCGCCCATCCT	TAGACCTCAGGTTCCCAAGTA	ATGCCATCTTCCCATTCGT
Forward primer		GGCGTTCGACTCAGTTGATT	GCAGCCAAGCGTTCATAGC	GTGCTGACATGCCAGGATTT	GATAACGCAGGTGTCCTAAGA	TTGGATAAACTCTCGCAGAC	TGACTGTCCCTTGGCTGTT	AGGCGGCGTTCAAGC	CTTCAAACCTCGCAAGACAAA	AGGCGTTCGACTCAGTTGAT	ATCAGCTGCGCTCCAGT	TTATAGTAATGGCGGGATTCA	GAAATTTCAAGCGGTGTT	AGGTGGTGGCGTTCAAGA	CAGAGCTGCAAGGCCTGTATC	CAATTCCAAAGGACGCTGCTT	ATGCAAGTCGAACGGGAAGTG	TGGAACGTCACTCTGCGAAAC	GGCATGCTGTAGTGAATGTC	TCAAGCCAACTTCTGTGTCGT
STS		CC0272	CC0277	CC0278	CC0281	CC0285°	CC0286	CC0292°	CC0311	CC0316	CC0336°	CC0344°	CC0352	CC0374 ^c	CC0421	CC0428°	CC0438-1	CC0482 ^c	CC0530°	CC0550

Table 4 (C	Sontd.)					
STS	Forward primer	Reverse primer	Annealing	Size ^a		Restriction enzymes used,
			(°C)	Chamaecyparis	Cryptomeria	
CC0592	ATTTGAGTTAGTTTGCGATGG	AGAAGATCCTCCTGCGTAAT	57	> 1,500	> 1,000	Rsal(0.50), Alul(0.50), Mboll(0.50), Hinf1(0.50), Ddel(0.50), Ncil(0.50), Bsy01(0.50)
CC0674	AGCGATCGCATGTTATTCTGA	TCCATGCGCTTCCTGTAGA	57	> 1.500	> 1,000	
CC0702	TTTACCAACAATTACAACCCA	GTTCTGCAGAGAGTTTGCCTT	6	450	500	1
201000 000000			10	005	500	
201000			10	000	000	1
0000016		CALCCACCI I CCLI I CALA		00/	000	
CC07315	TGCGCGCTTTCGGAGTTT	GICCACGCAGACGACCAGIIC	57	600	00/	Hintl(0.11)
CC0737°	TCTCTAATGTGGCAGCTCTTT	TGGAACTTATGCTACATCCCT	57	600	009	Dral(0.28)
CC0738°	GGGCTCTTCTTCTCA	TAAACCCAATTACAACTTGCT	57	300	1,400	1
CC0790	GGCCTATCGATCCTTTAGACT	GCCACTCTGCCACTTACAATA	57	600	550	TaaI(0.06)
CC0822	TGTCTGCCCATTGAGAAGT	TCAGATGCCATGTTGATAAGA	57	600	700	Alu (0.19), Hinfl(0.11)
CC0831	GCTCGTGCATCAAGGA	TGGGTTAAAAATAACTGGACA	54	> 1 500	1 200	Real(0.35) Seal(0.40) NdeII(0.33)
CC0837°	A A GATCA AGOGTATCA ATGO	CAGAAGATCCTCCTGCGTAAT	57	> 1 500	1,200	$H_{ab}(111(0,23), 23p_1(0,10), 1100000) Hinfl(0,37)$
CC0838	TGCGGGGGATTACTCA	TCCTATTCGACTGCATAAAG	57	500	500	$R_{cal}(0, 11) = H_{ao}(110, 18) = N_{ci}(0, 06)$
CC0020	A GTA ATGGCGCGCAGTGGAGT		57	450	200 400	$\frac{1000}{-}$
100000			5	000	004	
000000		AAAUI GGUGUUUUAI I GAGI U	70	1 000	1 200	<i>Hue</i> 111(0.10), <i>Su</i> 1(0.36)
CC0800	AACAGUGUUUUAAGIUIACA	CIAAGCUCIIICAUCAUGAAI	10	1,000	1,300	Hhal(0.06), Haell(0.06)
CC0951	GCGAAAGGCATTIGATGATAA	CAGACCAGCCGICACAGIT	09	1,300	850	$\tilde{Rsal}((0.30)$
CC0958	CTCAATGGCCGCTATTTCACT	GAAGCCAAACGAGAAGCAATG	57	500	500	Styl(0.48)
CC0973°	CCGGTGTGGTTTACAGG	AGTACACAGCTATGGCAGACT	57	700	600	MspI(0.38), DdeI(0.19)
CC0983	GTTCGATCTGGGGATCAACA	AACATGACTCCTTACCACCAC	62	700	500	AluI(0.36), HaeIII(0.25)
CC0991°	ATGCCAGGCTGATTTCTACAA	GACACAAGCCAAACATTCACA	57	> 1,500	1,600	Rsal(0.21)
CC1015°	GGAGAAATTGGAGGGCATAG	AAGTCTTAAGCAACCGAATGG	62	1,200	1,200	
CC1017	GAAGAGCCGCATCGTG	GCAAGCGCTCCATAACTGATA	09	650	600	AluI(0.16)
CC1104	TTTCTACATGCGTTCCAATGC	GCTGAGATGTCCCGACCCTA	57	800	009	
CC1112°	GGGACACTAAAGAGAAGAAAC	ATTCAGAGTCCAGCTATCAA	55	800	800	1
CC1135	TGCTGGCTGGAATTAATCAGA	GCTGCAGTGGCCTTTACACAT	57	550	009	1
CC1145	TCAACAATTGGCTGAGAACGA	GTCTTCATGCCTTGCCTCTG	57	500	500	1
CC1147	GCACCCATCTCACACTTGTC	CCACCCTGTTCATGTGATTCT	57	700	650	1
CC1172°	GCGCGCTTTCGTAGTTTGGAC	GGAGCATCACGACGCACTGTA	09	600	009	Hinfl(0.40)
CC1187 ^c	CAGATCCTGCACCATGTGGGAA	CAAACTGCCATGGCCAGACT	62	450	450	Rsal(0.45)
CC1195	ATGGTGCATTTGGGTGTA	ATGCTGGATCTATTGGCTTTA	57	1,200	1,100	
$CC1204^{\circ}$	CGAGCGCTCTGGAACATT	TCTGATTGATTGCCTTACGAG	57	> 1,500	1,300	1
CC1262°	GAGAAACGGGCATAGTGAG	ACATATTCTTTCCCAACTCCA	62	> 1,500	1,300	Dral(0.43), Bg/III(0.29)
CC1287°	TCAACTACTGGGGCATCTG	ACCACTTGGCTCCTTCTT	57	500	1,500	Ssp1(0.35)
CC1319°	ATAGTAATGGCGGGATTCAAAT	CGCCATTACAAGAACATAAGC	60	450	400	Ddel(0.37), Sspl(0.35)
CC1371	TCCGCAAGCATTTGAAGTAGG	GCCACACTCCCACACCACT	09	700	650	TaqI(0.38)
CC1415	AATTAACCTTATCCGCTCGTT	ACAATAAGAGTGGCGATGC	57	> 1,500	1,500	AluI(0.37), HinfI(0.37), StyI(0.38)
CC1432°	TGGTGATGTACACGCCTGGTT	CGTTGAAATTCTCGGGGGGCAT	62	1,200	1,500	Mspl(0.32), Rsal(0.32)
CC1463	TGGATGATGCGTCGTTGC	TCGAGAGAAATGACCCGTTTG	57	800	850	HaeIII(0.35)
CC1531°	AAACGCAGTCGAGAGGATGAG	CACCGGCAGATTCCAGTCTAC	62	600	650	1
CC1555	CTGCCGCCTTGTGTGGGA	CAGTCTGTGGCGAAGAGCAAA	57	750	700	
CC1606	TAACCAGCTTTGCCCTCAG	ATACAATTCGCGGGCTACCATA	62	1,000	900	Alu(0.12)
CC1625 [~]	CTCCAGACAGCGGTTCTTATG	TGCCATGGACTTCCTCTTCT	62	1,100	1,100	Rsal(0.46)

HaeIII(0.58), NdeII(0.50) Rsal(0.06), Dral(0.06) 	$Alul(0.06), Hael11(0.06), Hael1(0.06) Hhal(0.16) R_{sel}(0.36)$	Rsal(0.37)	1 1		Alul(0.35), Hhal(0.35) Taal(0.37)	Sin1(0.11)	SinI + Ncil(0.19) AT P ^e (0.19)	Hinf1(0.30)	Alul(0.19)	Rsal(0.34), HaeIII(0.34), Taal(0.26)	HaeIII(0.35), BanII(0.36)		(0.C.0)146141 	I	MspI(0.30), DdeI(0.30), TaqI(0.30), Bst0I(0.30), NciI(0.30)	Rsal(0.06), Taql(0.26)	MspI(0.36), RsaI(0.06), AluI(0.30)	1 1	MspI(0.32), AluI(0.32)		Ddel(0.30), Taql(0.37)	1 1	1	MspI(0.36), Bst0I(0.35), DdeI(0.19)	HaeIII(0.29), 1aq1(0.10) HaeIII(0.43), NdeII(0.41), Bst01(0.32), NsiI(0.32)		BanII + AvaI(0.38)	Taq1(0.36), Ssp1(0.35) Rso1(0.40) Hao11(0.28) Hho1(0.32)	EcoRI(0.06)		HimI(0.44), BSt01(0.21), Sin1(0.45) Hhal(0.26)	$Nsil(\hat{0}.30)$	Ι
1,100 1,500 1,500 800	800 009	2,000	800 800	1,400	600 700	> 1,500	> 2,000 1 000	2,000	550	2,000	800	008	006	500	1,000	> 1,500	1,000	200/	2,000	> 2,000	1,100	700	500	800	1,400 -	1,200	500		006	600	700	006	300
1,000 > 1,500 > 1,500 + 1,500	800 600 450	> 1,500	400 400	1,200	000 700	1,100	600 450	009	550 800	> 1,500	006	006	650	500	1,000	> 1,500	900 250	500	600	600	800	200 200	500	900 - 1 500	500 500	006	450	500 >1 500	800	700	700	1,200	300
55 55 55	57 57 60	62 55	57 57	62	29 29	57	57 63	57	57 57	57	57	62	10	57	57	62	62	70	57	09	57	10	57	62	50 50	50	09 1	51	09	50	00	65 2 2	C C
ATTCCCGGTACCCACCATTA AGACACAAGCCAAACATTCAC AATGAAGACTTGGGAAGAAC	TAGAGGCGCGCATTTGAGA CACCGGCAGATTCCAGTCTA ATCGGCTCCTTGATGTTCTT	GGGGGTAATTACCTACTATTG GAAGGGGTAATTACCTACTATTG	GAACCGGAACCAGACAT	ATGGGCGTGCCTCCTAA	GCCAGAALAAACI I GCCALI G TTGCCCTGAAGTGTAACCAAA	AGGCCAGTTTAACAAATGTCA	CTAGACCATGGCATAAACATT CTCAAACTGCCAAACAACAA	AATAGACCACCATGAAACC	CATCAAAAGGCAGGAAGAG	GAATTGGAATGGCATAAAGA	AGTTTGAGGAGGCATTATTT	GUGAUIGIAACAICAICIGG TTATEEAEEAEEAEEAEAEAEE	TGACGCTCTTTTTGATGCTG	CTGCCACCACACACACCCTCC	CAAACGCAAATACTGAAAGG	GATACTTCTCAGGCCCAACT	AACCTCTCCTCCAACTCACC	CACGCACCACTCCACCCTAC	GCTCCTCTGCTTTCCTTTCT	TGGCATCATGAGAGGACGAG	TACTCGTCTTCTAACCGTCA	GGCAAGTAAGGAAGGGCACA CCTTCAAGCCCTTCAACCAA	TGGGAAGAGAGAGACAAAAGAC	CGCAGTTCCAGTAGTTTCTC	AGGAACCCTGCTCTGTCTT	AAATTGCCATCCTTCCTCCT	CTACCGATGCAGAAGGCTCT	TAGAGGTTCAATGGAAGGCG CATGCAGAATCGTTGCATTT	AGCTCCAACCTCAAGACCA	CCGATCCAAATGTTATTCCG	GTCTCGCATCAAATCTCCGT	TACTACACCACCGCTTGCAG	AACIAGUCATGTGAGCAGGC
CAGGAAGCAACTCGCCACTA GCCAGGCTGATTTCTACAA GGCAAGCATGAATACTGTT ACTAAGGCGTGGGAGGAACTG	GCGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	GAAGGATTATGTGGGACTT TCA CCCTCCCCTTTTCA	GCGAAATTATTTGTAGCAGAA	AGCTGTGCGATCAAGTTTCTG	UGGUGIAI ICAUCI IAUAGAU AGAAATGGCCAACTGAG	ATAATGCCACCTCCAGGAC	TGTAGCGGAGAATACCAAG TACAGGAGGCGGAGGAC	ATACAGAACATGACGACCC	TGTTGCTGTCTTGGCTAATC	ATCCTAAGTCCCCAGAAAGT	CGGGCAAGCATTTCTGTTCT	CIAAAAIIACGGCACCGAC	CI OCCOCI OCCOLI TATI I CO GAGTACOGAGA AGGOTGTGA	TTCGCCAAGCCACCATAGAC	GTTGACATGATCCGAAAGAG	GGCAGCACACAGACAACACA	CCGCACTGCCATCTACGACT	AUAAUCAUAUUAUUAIUUAU GGCGATGGCAGCAAACGAAG	TACGTACGATGCGGTGGTTG	ATCAGAGGCAGTAGCAGAGG	CTAAAGGGAAACAAATCAGG	I I A CAGAGGGAAGGGGGGGGG TCCGAAGATAAACAACTCCA	GGCACTCCTCCTGAAAAGC	CCGCCACATTCACGCCCTCT	TTCTAGAGCTGGCCAAGAGC	GTATCCAGGGATGCTCGAAA	TTCTCATGGGGGGGGGGCAAACC	GCCCTCAGAAAGTTGCALTC AACACTGCAAGGGGAGATTGG	AAGGTTCATCGCCCTATGTG	CTAGGGTTGCTGTGGTTTCC	ATGGAGTCGCCACAAAAGAC	AGAGATGGCGCTCACTCATT	ALGAGAATICGICGIAGCGG
CC1689° CC1697 CC1711 CC1787	CC1798° CC1799 CC1908	CC1944	CC2051	CC2188 ^d	CC2237	CC2286 ^d	CC2288 CC2340 ^d	CC2388	CC2427	CC2433 CC2448 ^d	CC2478	CC2483	CC2300	CC2702 ^d	CC2716 ^d	CC2750 ^d	CC2752 ^d	$CC2831^{d}$	CC2839	CC2857	CC2860"	CC2916 CC2916	CC2917	CC2920	CC2930	CC2946 ^d	CC2976	CC3055" CC3106	CC3133 ^d	CC3142	CC3162	CC3367 ^d	UC339/*

STS	Forward primer	Reverse primer	Annealing	Size ^a		Restriction enzymes used,
			temperature (°C)	Chamaecyparis	Cryptomeria	and resulting PIC ^b
CC3414	TATTTTGGAGCTTTTTGCGG	TGGGTTGGTGTTGGAAGAAT	50	600	I	MspI(0.26), TaqI(0.53)
CC3455	TAACAAGGGAAAACACAGCA	CCGCATCCCATTGAACAGCA	60	1.000	I	Rsal(0.36), Hinf1(0.28)
CC3583	CCCACATCATCTTGTAGGGC	GCAGGGCTCCAAGTTTACAG	60	> 1.500	> 2,000	TaqI(0.42), DdeI(0.42)
CC3807	CAATCCCGTAACCAAAAACG	GCGTTGCTGATATGCTTTGA	50	> 1,500	1,000	
CC3816 ^d	AGTCAGAGCTGCCTGGAAAG	GCCACGAAGGGATTCATTTA	60	> 1.500	2,000	Rsal(0.32), Ddel(0.06)
CC3823 ^d	CCCCACAGGACATCAAAACT	ACGCATTCTCCATCACTTCC	50	1,000	006	
$CC3839^{d}$	CTGCATTTCCTCTGGAATCG	TTGGGATAAACCTTTTTGCG	50	> 1,500	2,000	1
CC3861	CTGACACTGATGAGGCCAGA	TGCAAAGATGGAAAACACCA	57	800	Ī	MspI(0.37), RsaI(0.37), AluI(0.36),
						HaeIII(0.35), DdeI(0.36), BamHI(0.36)
CC3872 ^d	AGCGGAAGTACCCTTTGGAT	GGTTCCCAGTGATTTCCTGA	60	> 1,500	1,600	DdeI(0.36), NdeII(0.26)
^a Approxin ^b The name	tate size of STS fragment amplified (bp s of restriction enzymes that detected th): No PCR amplification e polymorphisms No polymorphism c	letected, using a	ny of the 26 restric	tion enzymes, ar	nong the panel of 16 individuals. Numbers

^dTani et al. (2003a, b) ^e*ALP* Amplicon length polymorphism

parentheses indicate PI

³Iwata et al. (2001)

References

- Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314– 331
- Brown GR, Kandel EE III, Bassoni DL, Kiehne KL, Temesgen B, van Buijtnen JP, Sewell MM, Marshall KA, Neale DB (2001) Anchored reference loci in loblolly pine (*Pinus taeda* L.) for integrating pine genomics. Genetics 159:799–809
- Brunsfeld SJ, Soltis PS, Soltis DE, Gadek PA, Quinn CJ, Strenge DD, Ranker TA (1994) Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae: evidence from *rbcL* sequences. Syst Bot 19:253–262
- Chagne D, Brown G, Lalanne C, Madur D, Pot D, Neale D, Plomion C (2003) Comparative genome and QTL mapping between maritime and loblolly pines. Mol Breed 12:185–195
- Dirlewanger E, Cosson P, Tavaud M, Jaranzana M, Poizat C, Zanetto A, Arus P, Laigret F (2002) Development of microsatellite markers in peach [*Prunus persica* (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (*Prunus avium* L.). Theor Appl Genet 105:127–138
- Eckenwalder JE (1976) Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrono 23:237–300
- Gale MD, Devos KM (1998) Plant comparative genetics after 10 years. Science 282:656–659
- Hart JA (1987) A cladistic analysis of conifers: preliminary results. J Arnold Arboretum 68:269–307
- Hizume M, Kondo T, Shibata F, Ishizuka R (2001) Flow cytometric detamination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia 66:307– 311
- Isagi Y, Suhandono S (1997) PCR primers amplifying microsatellite loci of *Quercus myrsinifolia* Blume and their conservation between oak species. Mol Ecol 6:897–899
- Iwata H, Ujino-Ihara T, Yoshimura K, Nagasaka K, Mukai Y, Tsumura Y (2001) Cleaved amplified polymorphic sequence markers in sugi, *Cryptomeria japonica* D. Don, and their location on a linkage map. Theor Appl Genet 103:881–895
- Kinlaw CS, Neale DB (1997) Complex gene families in pine genomes. Trends Plant Sci 2:356–359
- Komulainen P, Brown GR, Mikkonen M, Karhu A, Garcia-Gil MR, O'Malley D, Lee B, Neale DB, Savolainen O (2003) Comparing EST-based genetic maps between *Pinus sylvestris* and *Pinus taeda*. Theor Appl Genet 107:667–678
- Kusumi J, Tsumura Y, Yoshimaru H, Tachida H (2000) Phylogenetic relationships in Taxodiaceae and Cupressaceae *sensu stricto* based on *matK* gene, *chlL* gene, *trnL-trnF* IGS region, and *trnL* intron sequences. Am J Bot 87(10):1480–1488
- Nikaido AM, Ujino T, Iwata H, Yoshimura K, Yoshimaru H, Suyama Y, Murai M, Nagasaka K, Tsumura Y (2000) AFLP and CAPS linkage maps of *Cryptomeria japonica*. Theor Appl Genet 100:825–831
- Price RA, Lowenstein JM (1989) An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Syst Bot 14:141–149
- Stefanovic S, Jager M, Broutin DJ, Masselot M (1998) Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. Am J Bot 85:688–697
- Steinkellner H, Lexer C, Turetschek E, Glossl J (1997) Conservation of (GA)n microsatellite loci between *Quercus* species. Mol Ecol 6:1189–1194
- Tani N, Takahashi T, Iwata H, Mukai Y, Ujino-Ihara T, Matsumoto A, Yoshimura K, Yoshimaru H, Murai M, Nagasaka K, Tsumura Y (2003a) A consensus linkage map for sugi (*Cryptomeria japonica*) from two pedigrees, based on microsatellites and expressed sequence tags. Genetics 165:1551–1568
- Tani N, Tsumura Y, Sato H (2003b) Nuclear gene sequences and DNA variation of *Cryptomeria japonica* samples from the postglacial period. Mol Ecol 12(4):859–868

Table 4 (Contd.)

- Temesgen B, Brown GR, Harry DE, Kinlaw CS, Sewell MM, Neale DB (2001) Genetic mapping of expressed sequence tag polymorphism (EST) markers in loblolly pine (*Pinus taeda* L.). Theor Appl Genet 102:664–675
- Tsumura Y, Tomaru N (1999) Genetic diversity of *Cryptomeria japonica* using co-dominant DNA markers based on sequenced-tagged sites. Theor Appl Genet 98:396–404
- Tsumura Y, Yoshimura K, Tomaru N, Ohba K (1995) Molecular phylogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. Theor Appl Genet 91:1222–1236
- Tsumura Y, Suyama Y, Yoshimura K, Shirato N, Mukai Y (1997) Sequence-tagged-sites (STSs) of cDNA clones in *Cryptomeria japonica* and their evaluation as molecular markers in conifers. Theor Appl Genet 94:764–772
- Tsumura Y, Tomaru N, Suyama Y, Bacchus S (1999) Genetic diversity and differentiation of *Taxodium* in the southeastern United States using cleaved amplified polymorphic sequences. Heredity 83:229–238

- Ujino T, Kawahara T, Tsumura Y, Nagamitsu T, Yoshimaru H, Ratnam W (1998) Development and polymorphism of simple sequence repeat DNA markers for *Shorea cuetisii* and Dipterocarpaceae species. Heredity 81:422–428
- Ujino-Ihara T, Yoshimura K, Yoshimaru H, Nagasaka K, Tsumura Y (2000) Expression analysis of ESTs derived from the inner bark of *Cryptomeria japonica*. Plant Mol Biol 43:451– 457
- Ujino-Ihara T, Matsumoto A, Iwata H, Yoshimura K, Tsumura Y (2002) Single-strand conformation polymorphism of sequence-tagged site markers based on partial sequences of cDNA clones in *Cryptomeria japonica*. Genes Genet Syst 77:251–257
- Wakamiya I, Newton RJ, Johnston JS, Price HJ (1993) Genome size and environmental factors in the genus *Pinus*. Am J Bot 80:1235–1241